Ridgewood Engineering

Ridgewood Engineering

- 1. Union Ridge Design and Modeling class
- 2. Foundations of Technology
 - Dual credit starting 2018/2019
- 3. Camp GADgET (Girls Adventuring in Design, Engineering & Technology)

Foundations of Technology Derek Cappaert Engineering Teacher

TOY SOLAR CAR

 \Box

Ó

0

Q

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcap

ANNA GUBAS & ADAM KLOPOTOWSKI

1ST GENERATION TOY SOLAR CAR

- Bad gear ratio
 - Low torque
 - Cannot change gear ratio
- High friction gears
- Low traction wheels
- Crooked wheels
- Difficult to work on motor

2ND GENERATION TOY SOLAR CAR

- Can easily change gear ratio
 Motor slides on track
- Belt drive lowers friction
 - Rubber band belt
 - Pulley attached
- Increased wheel traction
- Straighter wheels
- Easy to work on motor

2ND GENERATION SOLAR CAR

NEXT PROJECT

0

UNABOX

HAILEE POLASKI

UNABOX

- I chose to create a Unabox
- I learned how to use Inventer
 - Modeled parts
 - Created an assembly
 - Improved spatial skills
- 3D print blue parts
- Laser cut wood parts

0 170 180

Basswood Truss Bridge

Caitlyn Adams

Basswood Truss Bridge

- Multiview sketches
- Shape influences strength
- Gained construction skills
- Studied forces on bridges

Basswood Truss Bridge

Trebuchet Catapult

Johnathan Hernandez

Trebuchet Catapult

- Energy transfer
 - P.E. of counterweight to KE of marble
 - Energy lost to friction & air resistance
- Mechanical advantage
 - Projectile arm longer
 - Marble travels faster than C.W.

Projectile Analysis														
Trial #	mproj	mempty cw (kg)	mpennies (kg)	mtotal cw (kg)	Δhcw (cm)	Δh _{cw} (m)	PEcw (J)	KEproj (J)	vi (m/s)	H aunch	Radians	Rideal (m)	Ractual (in)	Ractual (m)
1	0.005575	0.1	0.0000	0.1000	7.5	0.075	0.44	0.44	12.58	45.00	0.79	16.14	21	0.53
2	0.005575	0.1	0.0215	0.1215	7.5	0.075	0.46	0.46	12.80	45.00	0.79	16.72	37	0.94
3	0.005575	0.1	0.0405	0.1405	7.5	0.075	0.47	0.47	13.00	45.00	0.79	17.23	44	1.12
4	0.005575	0.1	0.0725	0.1725	7.5	0.075	0.49	0.49	13.32	45.00	0.79	18.09	51	1.30
5	0.005575	0.1	0.0955	0.1955	7.5	0.075	0.51	0.51	13.54	45.00	0.79	18.71	55	1.40
6	0.005575	0.1	0.1355	0.2355	7.5	0.075	0.54	0.54	13.93	45.00	0.79	19.79	59	1.50
7	0.005575	0.1	0.175	0.2750	7.5	0.075	0.57	0.57	14.30	45.00	0.79	20.85	65	1.65
8	0.005575	0.1	0.1892	0.2892	7.5	0.075	0.58	0.58	14.43	45.00	0.79	21.23	67	1.70
9	0.005575	0.1	0.195	0.2950	7.5	0.075	0.58	0.58	14.48	45.00	0.79	21.39	72	1.83
10	0.005575	0.1	0.2121	0.3121	7.5	0.075	0.60	0.60	14.63	45.00	0.79	21.85	70	1.78
11	0.005575	0.1	0.2215	0.3215	7.5	0.075	0.60	0.60	14.72	45.00	0.79	22.10	71	1.80
12	0.005575	0.1	0.2551	0.3551	7.5	0.075	0.63	0.63	15.02	45.00	0.79	23.01	73	1.85
13	0.005575	0.1	0.2751	0.3751	7.5	0.075	0.64	0.64	15.19	45.00	0.79	23.55	75	1.91
14	0.005575	0.1	0.2931	0.3931	7.5	0.075	0.66	0.66	15.35	45.00	0.79	24.03	75	1.91
15	0.005575	0.1	0.315	0.4150	7.5	0.075	0.67	0.67	15.53	45.00	0.79	24.62	77	1.96

Trebuchet Catapult

Range vs Counterweight Mass

